
Using Iterative Repair to Improve the
Responsiveness of Planning and Scheduling

Steve Chien, Russell Knight, Andre Stechert, Rob Sherwood, and Gregg Rabideau

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91109

{firstname.lastname}@jpl.nasa.gov

Abstract
The majority of planning and scheduling research has
focused on batch-oriented models of planning. This paper
discusses the use of iterative repair techniques to support a
continuous planning process as is appropriate for
autonomous spacecraft control. This allows the plan to
incorporate execution feedback - such as early or late
completion of activities, and over-use or under-use of
resources. In this approach, iterative repair supports
continuous modification and updating of a current working
plan in light of changing operating context..

Introduction
In recent years Galileo, Clementine, Mars Pathfinder,
Lunar Prospector, and Cassini have all demonstrated a new
range of robotic missions to explore our solar system.
However, complex missions still require large teams of
highly knowledgeable personnel working around the clock
to generate and validate spacecraft command sequences.
Increasing knowledge of our Earth, our planetary system,
and our universe challenges NASA to fly large numbers of
ambitious missions, while fiscal realities require doing so
with budgets far smaller than in the past. In this climate,
the automation of spacecraft commanding becomes an
endeavor of crucial importance.

Autonomous spacecraft are made possible by equipping
the spacecraft with on-board software that provides
knowledge and reasoning procedures to determine
appropriate actions that achieve mission goals, to monitor
spacecraft health during execution, and to recover
autonomously from possible faults (Muscettola et al.
1999). An on-board planner/scheduler is a key component
of such a highly autonomous system.

Recent experiences indicate the promise of planning and
scheduling technology for space operations. Use of the
DATA-CHASER automated planning and scheduling
system (DCAPS) to command the DATA-CHASER shuttle

. Copyright © 2000, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

payload reduced commanding-related mission operations
effort by 80% and increased science return by 40% over
manually generated sequences (Chien et al. 1999). This
increase was possible because short turn-around times
(approximately 6 hours) imposed by operations constraints
did not allow for lengthy, manual optimization. And the
Remote Agent Experiment (ARC, JPL et al. 1999)
demonstrated the feasibility of flying AI software
(including a planner) to control a spacecraft.

This paper describes a further step in incremental
planning and scheduling. In this approach, rather than
constructing batch back-to back plans, a persistent agent
always has a plan for a fixed time span in to the future.

The remainder of this paper is organized as follows.
First, we describe our approach to interleaving planning
and execution and how it improves the responsiveness of
the planning component. Next, we describe technical
details of our approach to interleaving planning and
execution and how this approach is used to reduce this
response time of the planner/scheduler. We then highlight
how this system works using examples from spacecraft
operations. We then describe an empirical evaluation of
our approach in a stochastic domain. Finally, we describe
future work and related work and conclusions.

Integrating Planning and Execution
Traditionally, much of planning and scheduling research
has focused on a batch formulation of the problem. In this
approach (see Figure 1), time is divided up into a number
of planning horizons, each of which lasts for a significant
period of time. When one nears the end of the current
horizon, one projects what the state will be at the end of

Plan for
next horizon

Plan for
next horizon

Figure 1 Traditional Batch "Plan then Execute" Cycle

the execution of the current plan. The planner is invoked
with a new set of goals and this state as the initial state (for
example the Remote Agent Experiment operated in this
fashion (Pell et al, 1997)) .

This approach has a number of drawbacks. In this batch
oriented mode, typically planning is considered an off-line
process which requires considerable computational effort
and there is a significant delay from the time the planner is
invoked to the time that the planner produces a new plan.1
If a negative event occurs (e.g., a plan failure), the
response time until a new plan may be significant. During
this period the system being controlled must be operated
appropriately without planner guidance. If a positive event
occurs (e.g., a fortuitous opportunity, such as activities
finishing early), again the response time may be
significant. If the opportunity is short lived, the system
must be able to take advantage of such opportunities
without a new plan (because of the delay in generating a
new plan). Finally, because the planning process may need
to be initiated significantly before the end of the current
planning horizon, it may be difficult to project what the
state will be when the current plan execution is complete.
If the projection is wrong the plan may have difficulty.

To achieve a higher level of responsiveness in a dynamic
planning situation, we utilize a continuous planning
approach and have implemented a system called CASPER
(for Continuous Activity Scheduling Planning Execution
and Replanning). Rather than considering planning a batch
process in which a planner is presented with goals and an
initial state, the planner has a current goal set, a plan, a
current state, and a model of the expected future state. At
any time an incremental update to the goals, current state,
or planning horizon (at much smaller time increments than
batch planning)2 may update the current state of the plan
and thereby invoke the planner process. This update may
be an unexpected event or simply time progressing
forward. The planner is then responsible for maintaining a
consistent, satisficing plan with the most current
information. This current plan and projection is the
planner’s estimation as to what it expects to happen in the
world if things go as expected. However, since things

1 As a data point, the planner for the Remote Agent
Experiment (RAX) flying on-board the New Millennium
Deep Space One mission (Muscettola et al 1997) takes
approximately 4 hours to produce a 3 day operations plan.
RAX is running on a 25 MHz RAD 6000 flight processor
and uses roughly 25% of the CPU processing power.
While this is a significant improvement over waiting for
ground intervention, making the planning process even
more responsive (e.g., on a time scale of seconds or tens of
seconds) to changes in the operations context, would
increase the overall time for which the spacecraft has a
consistent plan. As long as a consistent plan exists, the
spacecraft can keep busy working on the requested goals
and hence may be able to achieve more science goals.
2 For the spacecraft control domain we are envisaging an
update rate on the order of 10s of seconds real time.

rarely go exactly as expected, the planner stands ready to
continually modify the plan. From the point of view of the
planner, in each cycle the following occurs:

• changes to the goals and the initial state first posted
to the plan,

• effects of these changes are propagated through the
current plan projections (includes conflict
identification)

• plan repair algorithms3 are invoked to remove
conflicts and make the plan appropriate for the
current state and goals.

This approach is shown in below in Figure 2. At each step,
the plan is created by using iterative repair with:

• the portion of the old plan for the current planning
horizon;

• the updated goals and state; and
• the new (extended)planning horizon.

Even though our intent is to make the planning process
very responsive (on the order of seconds), there still
remains a synchronization process between planning and
execution. Specifically, there are several issues in
integrating planning with real time execution - below we
list these issues and how they are addressed in our
approach.

• When to replan? Our approach replans when the
current plan projection predicts a problem with the
current plan (i.e. when the plan combined with the
current state is infeasible).

• What to do (execute) during planning time? If
feedback from the world combined with the current
plan indicates that the current plan has a flaw (e.g.,
the plan will not execute or does not achieve goals),
what gets executed during the time that the planner
is replanning? Our approach attempts to minimize
the amount of time for replanning to minimize the
chance that a conflict appears in the portion of the
old plan that gets executed.

• How much time should the planner be given to
replan? The longer the planner is given the more
likely it will be able to resolve all of the problems.
But the longer the replan time, the greater the
problem of "What to execute in the meantime?"
from above. Our approach attempts to minimize the

3 I n this paper we do not focus on the state/resource
representation or the repair methods, for details see
(Rabideau et al. 1999).

Figure2 Continuous Planning Incremental Extension

amount of time given to replan, but we believe this
criteria can only be determined in a domain-specific
fashion4.

• How to ensure the planner does not change
activities that are already in execution? Our
approach uses a commitment mechanism to
represent activities that would not be changeable by
the time that the planner would complete its current
cycle of reasoning. When an activity overlaps with
this window (i.e. the activity is scheduled to begin
very soon) it is committed. This means that the
planner is forbidden from altering any aspect of this
activity (such as by moving the activity or altering
the activity parameters). Thus far we have focused
on time-based commitment strategies (e.g., commit
any activities scheduled to begin in the next T time
units), however, our architecture supports more
complex commitment strategies (such as it being
dependent on the class of activity and allowing
parameter changes later than activity moves, etc.).

In addition to increasing the responsiveness of planning,
the continuous planning approach has additional benefits:

• The planner can be more responsive to unexpected
(i.e., unmodeled) changes in the environment that
would manifest themselves as updates on the
execution status of activities as well as monitored
state and resource values.

• The planner can reduce reliance on predictive
models (e.g., inevitable modeling errors), since it
will be updating its plans continually.

• Fault protection and execution layers need to worry
about controlling the spacecraft over a shorter time
horizon (as the planner will replan within a shorter
time span).

• Because of the hierarchical reasoning taking place
in the architecture there is no hard distinction
between planning and execution – rather more
deliberative (planner) functions reside in the longer-
term reasoning horizons and the more reactive
(execution) functions reside in the short-term
reasoning horizons. Thus, there is no planner to
executive translation process.

In conjunction with this incremental, continuous
planning approach, we are also advocating a hierarchical
approach to planning. In this approach, the long-term
planning horizon is planned only at a very abstract level.
Shorter and shorter planning horizons are planned in
greater detail, until finally at the most specific level the
planner plans only a short time in advance (just in time
planning). This paradigm is illustrated in Figure 3. Within
each of these layers, the planner is operating continuously
in the mode described above. However, the length of the
planning horizon, and the frequency with which the plan is

4 However, an interesting area of research is to
automatically determine this via empirical feedback and
domain analysis.

updated varies. In the longer-term more abstract levels, the
planning horizon is longer and the abstract plan is updated
less frequently. In the more detailed short-term level, the
plans are updated more frequently.

The idea behind this hierarchical approach is that only
very abstract projections can be made over the long-term
and that detailed projections can only be made in the short-
term because prediction is difficult due to limited
computational resources and timely response requirements.
Hence there is little utility in constructing a detailed plan
far into the future – chances are it will end up being re-
planned anyway. At one extreme the short-term plan may
not be “planned” at all and may be a set of reactions to the
current state in the context of the near-term plan. This
approach is implemented in the control loop described
above by making high-level goals active regardless of their
temporal placement, but medium and low-level goals are
only active if they occur in the near future. Likewise,
conflicts are only regarded as important if they are high-
level conflicts or if they occur in the near future. As the
time of a conflict or goal approaches, it will eventually
become active and the elaboration/planning process will
then be applied to resolve the problem.

An Architecture for Integrated
Planning and Execution

Our approach to integration of planning and execution
relies on three separate classes of processes.
• The Planner Process(es) - this process represents the

planner, and is invoked to update the model of the plan
execution, to refine the plan, or when new goals are
requested.

• The Execution Process(es) - this process is
responsible for committing activities and issuing
actual commands corresponding to planned activities.

• The State Determination Process(es) - this process is
responsible for monitoring and estimating states and
resource values and providing accurate and timely
state information.

• The Synchronization Process - this process enforces
synchronization between the execution, planner, and
state determination processes. This includes receiving
new goals, determining appropriate timeslices for
planning and locking the plan database to ensure non-
interference between state updates and the planner.

We describe planning, execution, and state determination
as sets of processes because often these logical tasks will

L o n g T e r m M i s s i o n P l a n

M e d i u m T e r m P la n

S h o r t T e r m P l a n

I n c r e a s e d
D e t a i l

Figure 3 Hierarchical Planning Horizons

be handled by multiple processes. For example, spacecraft
attitude control execution might be handled by one
process, data management by another, etc. However, for
the purposes of this paper (e.g., integration of planning and
execution), the only relevant issue is that our
synchronization strategy can be applied to a multiple
process scheme for planning, state determination, etc.

The overall architecture for the continuous planning
approach is shown in Figure 4. We now describe how each
of the four basic components operates.

The planner process maintains a current plan that is used
for planning (e.g. hypothesizing different courses of
action). It responds to requests to replan initiated by the
execution processes, activity commitments vfrom the
execution module, state (and resource) updates from state
estimation, and new goals (from external to the system).
All of these requests are moderated by the synchronization
process that queues the requests and ensures that one
request is complete before another is initiated. The
planners copy of the current plan is also where projection
takes place and hence it is here that future conflicts are
detected. However, as we will see below, requests to fix
conflicts occur by a more circuitous route.

The execution process is the portion of the system
concerned with a notion of "now". The execution module
maintains a copy of the plan that is incrementally updated
whenever the planner completes a request (e.g., a goal
change, state change, or activity change). This local copy
includes conflict information. The execution module has
three general responsibilities:

1. to commit activities in accordance with the
commitment policy as they approach their execution
time;

2. to actually initiate the execution of commands (e.g.,
processes) at the associated activity start times

3. to request re-planning when conflicts exist in the

current plan
The execution module performs 1 & 2 by tracking the
current time and indexing into relevant activities to commit
and execute them. The execution module also tracks
conflict information as computed by the projection of the
planner and submits a request for replanning to the
synchronization module when a conflict exists.5

The state estimation module is responsible for tracking
sensor data and summarizing that information into state
and resource updates. These updates are made to the
synchronization module that passes them on to the planners
plan database when coordination constraints allow.

The synchronization module ensures that the planner
module(s) are correctly locked while processing. At any
one time the planner can only be performing one of its four
responsibilities: (re)planning, updating its goals,
incorporating a state update, updating the execution
module's plan for execution, or updating commitment
status (otherwise we run the risk of race conditions causing
undesirable results). The synchronization module
serializes these requests by maintaining a FIFO task queue
for the planner and forwarding the next task only when the
previous task has finished.

The execution module also has a potential
synchronization issue. The planner must not be allowed to
modify activities (through replanning) if those activities
might already have been passed on to execution. We
enforce this non-interference by "commit"-ing all activities
overlapping a temporal window extending from now to
some short period of time in the future (typically on the
order of several seconds). We ensure that the planner is
called in a way that each replan request will always return
within this time bound and we enforce that the planner
never modifies a committed activity. This ensures that the
planner will not complete a replan with an activity
modified that is already in the past. Additionally, we use
the synchronization process to ensure that the Execution
module does not commit activities while the planner is
replanning. This prevents the planner from modifying
activities that have been committed subsequent to the
planner call (but still in the future).

ST4 Spacecraft Landed
Operations Scenario Validation

Space Technology 4 / Champollion (ST4) is a mission
concept for outer solar system exploration. In late 2005,

5 In our implementation replanning is initiated by the
execution module because this allows for the notion of
urgency information (e.g. closeness of the conflict to
current execution) to be incorporated in the decision to
replan. If we did not wish to incorporate this information,
the planner module could make this request directly to the
synchronization module.

Hardware Actuators
or Simulation

Planner

State
EstimationExecution

Synchronization

Plan
Updates

Request
to Replan
& Activity
Commits

State
Updates

New Goal
Requests

Activity
Commits &
Execution

Sensor
Feedback

Figure 4: CASPER Architecture

following a two-and-a-half-year journey, ST4 will match
orbits, or rendezvous, with Comet Tempel 1, as the comet
is moving away from the Sun. The spacecraft will spend
several months orbiting the comet nucleus, making highly
accurate maps of its surface and making some preliminary
compositional measurements of the gas in the coma. The
data returned from ST4 will be used to determine the mass,
shape, and density of the comet’s nucleus and to make
some early estimates about its composition.

After studying the nucleus from orbit, the spacecraft will
send a small vehicle (a lander) to the surface. The lander
will use a one-meter long drill to collect samples and then
feed them to a gas chromatograph/mass spectrometer
onboard the lander. This instrument will analyze the
composition of the nucleus collected from various depths
below the surface. The lander will also carry cameras to
photograph the comet surface. Additional instruments
planned onboard the lander to determine the chemical
makeup of the cometary ices and dust will include an
infrared/spectrometer microscope and a gamma-ray
spectrometer. After several days on the surface, the lander
will bring a sample back to the orbiter for return to Earth.

In order to test and evaluate our integrated planning and
execution approach, we have constructed a number of test
cases within the ST4 landed operations scenario. We have
also constructed an ST4 simulation, which accepts
relatively high-level commands such as: MOVE-DRILL,
START-DRILL, STOP-DRILL, TAKE-PICTURE,
TURN-ON <device>, etc. The simulation covers
operations of hardware devices. In this test scenario the
planner has models of 11 state and resource timelines,
including drill location, battery power, data buffer, and
camera state. The model also includes 19 activities such as
uplink data, move drill, compress data, take picture, and
perform oven experiment.

The continuous planner scenario has focused on the
comet lander portion of the ST4 mission. It comprises a
period of approximately 80 hours of lander operations on
the comet surface. It is intended to represent a class of test
cases against which to evaluate the performance of various
command and control strategies for this portion of the
mission.

The nominal mission scenario consists of three major
classes of activities: drilling and material transport,
instrument activity including imaging and in-situ materials
experiments, and data uplink. Of these, drilling is the most
complex and unpredictable.

The mission plan calls for three separate drilling
activities. Each drilling activity drills a separate hole and
acquires samples at three different depths during the
process: a surface sample, a 20 cm. deep sample, and a
one-meter deep sample. Acquiring a sample involves five
separate “mining” operations after the hole has been drilled
to the desired depth. Each mining operation removes 1 cm.
of material. Drilling rate and power are unknown a priori,
but there are reasonable worst-case estimates available.
Drilling can fail altogether for a variety of reasons.

One of the three drilling operations is used to acquire
material for sample-return. The other two are used to
supply material to in-situ science experiments onboard the
lander. These experiments involve depositing the samples
in an oven, and taking data while the sample is heated.
Between baking operations the oven must cool, but there
are two ovens, allowing experiments to be interleaved
unless one of the ovens fails.

In order to validate the effectiveness of our continuous
planning approach we have performed a number of
empirical tests to measure CASPER performance in terms
of:

1. responsiveness - the ability to deal with execution
feedback in a timely fashion;

2. robustness - the ability to produce executable plans
despite run-time variations in state, resource, and
activity durations; and

3. plan effectiveness - a measure of the overall
goodness of executed activities (with respect to
achieving plan goals).

We assessed these performance metrics using a stochastic
version of the ST4 simulation described above. This
simulation had a number of random variables, which are
described below.

• Compression - we model the compression for
science data as a normal random variable with a
mean of 0.9 and a standard deviation of 0.25*0.9.
This has the effect of forcing the planner to respond
to buffer over-runs (as described above) and buffer
under-runs (to optimize the plan).

• Drilling Time - we model the amount of time to
drill in minutes as a random variable with mean of
30 and standard deviation of 3.

• Drilling power - we model the actual power
consumption from drilling in watts as a normal
random variable with mean 40 and standard
deviation 4.

• Oven Failure - we model oven failure occurrence as
Poisson distributed with each oven having a 50%
chance of failure over the entire mission horizon.

• Data Transmission Rate: we model the time to
transmit data in kilobits per second as a normal
random variable with a mean of 100 and a standard
deviation of 10. This is intended to model the
variability in communications to the orbiter.

• Oven Warming and Cooling Times: we model the
amount of time to heat up the sample and for the
oven to cool down in minutes as random variables
with means of 30 and 120, and standard deviations
of 3 and 12, respectively. This is intended to model
the unknown thermal properties of the samples.

In our tests we compare the CASPER continuous planning
repair approach to two alternative approaches:

1. Batch planning with no feedback - in this approach
an operations plan is generated from the initial state
and this plan is executed. No feedback from
execution is used.

2. Batch replanning on failure - in this approach an
operations plan is generated from scratch. When an
activity fails, the execution system halts execution
and replans from scratch (rather than modifying the
existing plan as in the CASPER approach). No
activities are executed while the planner is
replanning.

In all cases, we compare the approaches using models with
best guess nominal estimates for times and resource usage,
as well as pessimistic 1-sigma estimates.

In order to assess the responsiveness of the system, we
measured the average amount of time from the receipt of
an update that required replanning to the time when a
conflict free plan is available (see Tables 1, 2 and 3: Time
to Correct Plan). In order to assess the robustness of the
system, we track the number of times when an invalid
activity is commanded (see Tables 1, 2 and 3: Number of
Invalid Commands). In order to assess the plan
effectiveness, we measure the science return of executed
activities (as measured by number of samples drilled and
analyzed in situ where the data was successfully
transmitted to the orbiter) 24 science goals are originally
submitted to the system, and we report the number
completed successfully. (See Tables 1, 2 and 3: Number of
Achieved Science Goals).

In our setup, CASPER was running on a Sun
Sparcstation Ultra 60 with a 359 MHz process with 1.1 GB

Memory. During each run, the simulator updates the plan
an average of 18,000 times. (Most of these are battery
power level updates.) On average, only 86 updates result in
conflicts that should be handled by the planner/scheduler.

We observe that CASPER outperforms batch planning
and batch replanning in the ST4 domain in terms of
spacecraft commanding and achieving science goals. Note
that batch planning requires no time to correct an updated
plan because it does not replan, and therefore is superior to
CASPER in terms of the amount of time required to correct
a plan. However, batch planning suffers considerably due
to incomplete data transmissions and spoiled experiments
where samples where placed into inappropriately
configured or failed ovens. Batch replanning performs
much better, but the replan time translates into missed
opportunities to plan and schedule science goals. Also,
more invalid commands are executed due to the time it
takes to replan. CASPER does execute some invalid
commands due to the fact that it takes some time to correct
an invalid plan, but CASPER achieves far more science
goals.

Discussion
While the current prototype has been tested on a range of
cases in which state updates require replanning, we have
focused on execution feedback that cause conflicts in the
plan. In the case of the failed oven, buffer over-use, and
activity completion time problem, the state update (when
propagated through the plan) causes a conflict. There are
other cases in which a state update enables a plan
improvement. For example,

• battery power usage might be lower than expected
enabling insertion of an additional sample activity
content-dependent compression might perform
better than expected allowing storage of additional
experiment data; or

• drilling might be faster than expected again
allowing for additional science activities.

In each of these cases, the planner needs to be aware of the
potential for improvement in the current plan and be
triggered to attempt to take advantage of the fortuitous
situation. In related work (Rabideau et al. 2000), we have
been developing plan optimization techniques for
representing soft constraints (preferences) and improving
plans with respect to these preferences (e.g., do more
science). Our approach to optimization is an anytime,
incremental approach, thus the timeslices for the planner
can be used to attempt to improve the plan if there are no
conflicts in the plan.

A second issue is that in the current prototype, the
planner can only respond to unexpected changes on
activity boundaries. This is a significant limitation when
there are activities that have extremely long durations.
This limitation is because the planner does not have a
model detailed enough to predict the resultant state if
activities are interrupted in mid-execution. It would be
useful if the planner could incorporate a model that could

Overall
Performance

invalid
commands

achieved
science goals

time to
correct plan
(in seconds)

CASPER 2.365 20.063 1.134
Batch

planning
54.769 2.194 0

Batch
replanning

17.977 6.722 20.125

Table 1 Overall Performance Comparison Averages

Best Guess
Performance

invalid
commands

achieved
science goals

time to
correct plan
(in seconds)

CASPER 2.909 24.677 .978

Batch
planning

61.341 2.699 0

Batch
replanning

22.112 16.878 17.107

Table 2 Best Guess Performance Comparison Averages

Pessimistic
Performance

invalid
commands

achieved
science goals

time to
correct plan
(in seconds)

CASPER 1.821 15.448 1.291
Batch

planning
48.197 1.690 0

Batch
replanning

13.842 10.566 23.144

Table 3 Pessimistic Performance Comparison
Averages

represent interruptible activities and act appropriately.
Currently such phenomenon must be modeled by breaking
the activity into smaller activities.

While we have tested our prototype on a range of
realistic scenarios, we would like to have a larger set of
missions and concepts to test against. Because CASPER is
currently being used for autonomous rover applications, we
are in the process of adapting rover simulations for similar
testing. Additionally we anticipate having access to
several other spacecraft simulations. We intend to further
test and validate our approach against these missions.

Another interesting area for future work is investigating
more powerful commitment strategies. One could easily
envisage problems in which different classes of activities
would have different possibilities for interruption or might
be terminatable with sufficient lead-time. Enabling the
planner to represent these contexts and handle them
appropriately would be desirable.

Related Work
The high-speed local search techniques used in our
continuous planner prototype are an evolution of those
developed for the DCAPS system (Chien et al. 1999) that
has proven robust in actual applications. In terms of
related work, iterative algorithms have been applied to a
wide range of computer science problems such as traveling
salesman (Lin & Kernighan 1973) as well as Artificial
Intelligence Planning (Biefeld & Cooper 1991, Chien &
DeJong 1994, Zweben et al. 1994, Hammond 1989,
Sussman 1973). Iterative repair algorithms have also been
used for a number of scheduling systems. The
GERRY/GPSS system (Deale et al. 1994, Zweben et al.
1994) uses iterative repair with a global evaluation
function and simulated annealing to schedule space shuttle
ground processing activities. The Operations Mission
Planner (OMP) (Biefeld & Cooper 1991) system used
iterative repair in combination with a historical model of
the scheduler actions (called chronologies) to avoid cycling
and getting caught in local minima. Work by Johnston and
Minton (Johnston & Minton 1994) shows how the min-
conflicts heuristic can be used not only for scheduling but
also for a wide range of constraint satisfaction problems.

The OPIS system (Smith 1994) can also be viewed as
performing iterative repair. However, OPIS is more
informed in the application of its repair methods in that it
applies a set of analysis measures to classify the bottleneck
before selecting a repair method. With iterative repair and
local search techniques, we are exploring approaches
complementary to backtracking refinement search
approach used in the New Millennium Deep Space One
Remote Agent Experiment Planner (ARC 1999).

Excalibur (Narayek, 1998) represents a general
framework for using constraints to unify planning and
scheduling constraints, uncertainty, and knowledge. This
framework is consistent with the CASPER design,

however in this paper we have focused on a lower-level.
Specifically, we have focused on re-using the current plan
using iterative repair and specific locking mechanisms to
avoid race conditions.

Work on the PRODIGY system (Cox & Veloso 1998)
has indicated how goals may be altered due to
environmental changes/feedback. These changes would be
modeled in our framework via task abstraction/retraction
and decomposition for potentially failing activities. Other
PRODIGY work (Veloso, Pollack, & Cox 1998) has
focused on determining which elements of world state need
to be monitored because they affect plan appropriateness.
In our approach we have not encountered this bottleneck,
our fast state projection techniques enable us to detect
relevant changes by noting the introduction of conflicts
into the plan.

Work on CPEF (Continuous Planning and Execution
Framework) (Myers 1998) uses PRS, AP, and SIPE-2, also
represents a similar framework to integrating planning and
execution. CPEF and CASPER differ in a number of
ways. First, CPEF attempts to cull out key aspects of the
world to monitor (as is necessary in general open-world
domains). They also suggest the use of iterative repair
(they use the term conservative repairs). And their
taxonomy of failure types is very similar to ours in terms
of action failure and re-expansion of task networks (re-
decomposition). However, in this paper we have focused
on lower level issues in synchronization and timing.

Work in the O-Plan system has also addressed rapid
replanning (Drabble et al. 1997). They describe an
approach that generally invokes the planner with the
current plan in a repair mode from the current state. In this
way their approach and the CASPER one are very similar.
However, we have focused on lower-level timing and
synchronization issues necessary for execution and
planning on a shorter timescale.

Work in the 3T system (Bonasso et al. 1997) has also
examined issues of integrating planning and execution.
Again, they present a framework consistent with our
architecture but we have focused on lower-level timing
issues.

Conclusions
This paper has described an approach to integrating

planning and execution for spacecraft control and
operations. This approach has the benefit of reducing the
amount of time required for an onboard planning process
to respond to changes in the environment or goals. In our
approach, environmental changes or inaccurate models
cause updates to the current state model and future
projections. Additionally, the planner’s current goal set
may change. In either case, if these changes matter (e.g.,
the current plan no longer applies) they will cause conflicts
in the current plan. These conflicts are attacked using fast,
local search and iterative repair methods

Acknowledgements
This work was performed by the Jet Propulsion
Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space
Administration. Portions of this work were supported by:
the Autonomy Technology Program, managed by Dr.
Richard Doyle and with Melvin Montemerlo as the
headquarters program executive, NASA Code SM and by
the Mission Data Systems Project, managed by Allan
Sacks, NASA Code S, and by the JPL Telecommunications
and Mission Operations Technology Program, Mission
Services Element managed by Peter Shames. Comments
and feedback from Bob Rasmussen, Kim Gostelow, Dan
Dvorak, Erann Gat, Glenn Reeves, and Ed Gamble were
very helpful in formulating and refining the ideas presented
in this paper.

References
NASA Ames & JPL, Remote Agent Experiment Web

Page, http://rax.arc.nasa.gov/, 1999.
E. Biefeld and L. Cooper, “Bottleneck Identification

Using Process Chronologies,” Proceedings of the 1991
International Joint Conference on Artificial Intelligence,
Sydney, Australia, 1991.

R. P. Bonasso, J. Firby, E. Gat, D. Kortenkamp, D.
Miller, M. Slack, "Experiences with an architecture for
intelligent, reactive agents. Journal of experimental and
theoretical artificial intelligence 9(2).

S. Chien and G. DeJong, “Constructing Simplified Plans
via Truth Criteria Approximation,” Proceedings of the
Second International Conference on Artificial Intelligence
Planning Systems, Chicago, IL, June 1994, pp. 19-24.

S. Chien, G. Rabideau, J. Willis, and T. Mann,
“Automating Planning and Scheduling of Shuttle Payload
Operations,” Artificial Intelligence Journal, 114 (1999)
239-255.

M. Cox & M. Veloso, "Goal Transformation in
Continuous Pannning," in Proceedings of the AAAI Fall
Symposium on Distributed Continual Planning, 1998.

M. Deale, M. Yvanovich, D. Schnitzius, D. Kautz, M.
Carpenter, M. Zweben, G. Davis, and B. Daun, “The Space
Shuttle Ground Processing System,” in Intelligent
Scheduling, Morgan Kaufman, San Francisco, 1994.

B. Drabble, J. Dalton, A. Tate, "Repairing Plans on the
Fly," Working Notes of the First International Workshop
on Planning and Scheduling for Space, Oxnard, CA 1997.

A. Fukunaga, G. Rabideau, S. Chien, D. Yan, “Towards
an Application Framework for Automated Planning and
Scheduling,” Proc. 1997 Int.l Symp. on Art. Int., Robotics
and Automation for Space, Tokyo, Japan, July 1997.

K. Hammond, “Case-based Planning: Viewing Planning
as a Memory Task,” Academic Press, San Diego, 1989.

M. Johnston and S. Minton, “Analyzing a Heuristic
Strategy for Constraint Satisfaction and Scheduling,” in
Intelligent Scheduling, Morgan Kaufman, San Francisco,
1994.

H. Kautz, B. Selman, “Pushing the Envelope: Planning,
Propositional Logic, and Stochastic Search,” Proceedings
AAAI96.

S. Lin and B. Kernighan, “An Effective Heuristic for the
Traveling Salesman Problem,” Operations Research Vol.
21, 1973.

D. Mittman (mission operations and planning lead for
Space Infra-red Telescope (SIRTF) Mission, personal
communications, April 1997.

N. Muscettola, B. Smith, S. Chien , C. Fry , K. Rajan, S.
Mohan, G. Rabideau , D. Yan, “On-board Planning for the
New Millennium Deep Space One Spacecraft,”
Proceedings of the 1997 IEEE Aerospace Conference,
Aspen, CO, February, 1997, v. 1, pp. 303-318.

K. Myers, "Towards a Framework for Continuous
Planning and Execution", in Proceedings of the AAAI Fall
Symposium on Distributed Continual Planning, 1998.

A. Nareyek, "A Planning Model for Agents in Dynamic
and Unicertain Real-Time Environments," in Integrating
Planning, Scheduling, and Execution in Dynamic and
Uncertain Environments, AIPS98 Workshop, AAAI
Technical Report WS-98092.

B. Pell, D. Bernard, S. Chien, E. Gat, N. Muscettola, P.
Nayak, M. Wagner, and B. Williams, “ An Autonomous
Spacecraft Agent Prototype,” Autonomous Robots, March
1998.

G. Rabideau, R. Knight, S. Chien, A. Fukunaga, A.
Govindjee, "Iterative Repair Planning for Spacecraft
Operations in the ASPEN System," Int Symp on Artificial
Intelligence Robotics and Aut. in Space (ISAIRAS),
Noordwijk, The Netherlands, June 1999.

G. Rabideau, B. Engelhardt, S. Chien, "Using Generic
Preferences to Incrementally Improve Plan Quality," in
Proc. 5th Int. Conf. on Artificial Intelligence Planning and
Scheduling (AIPS-2000), Breckenridge, CO. April,2000.

R. Ridenoure, New Millennium Mission Operations
Study, June 1995.

R. Simmons, “Combining Associational and Causal
Reasoning to Solve Interpretation and Planning Problems,”
Tech. Rep., MIT Artificial Intelligence Laboratory, 1988.

S. Smith, “OPIS: An Architecture and Methodology for
Reactive Scheduling,” in Intelligent Scheduling, Morgan
Kaufman, 1994.

G. Sussman, “A Computational Model of Skill
Acquisition,” Technical Report, MIT Artificial Intelligence
Laboratory, 1973.

M. Veloso, M. Pollack, M. Cox, "Rationale-based
monitoring for planning in dynamic environments,"
Proceedings Artificial Intelligence Planning Systems
Conference, Pittsburgh, PA, 1998.

M. Zweben, B. Daun, E. Davis, and M. Deale,
“Scheduling and Rescheduling with Iterative Repair,” in
Intelligent Scheduling, Morgan Kaufman, San Francisco,
1994.

